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Prognostics Testbed

� Motivation

� To facilitate research in prognostics, it is imperative to have a hardware testbed 

that mimics the complexities and issues encountered for a real system.

� Such a system will support

� Algorithm development

� Testing and validation of prognostic tools� Testing and validation of prognostic tools

� Benchmarking of different approaches

� Development of metrics for prognostics

� Collection and dissemination of run-to-failure data

� Goal

Demonstrate ability to distinguish between components at different health states 

having similar external observables and then to predict the end of life



Why Batteries?

• Resemble a system that has real-world relevance

• Allow for repeated run-to-failure of components

• Perform run-to-failure in reasonable time

• Support monitoring of ground truth

• Collect data for state assessment

• Support demonstration of prognostic solutions• Support demonstration of prognostic solutions

• Allow control of several operational and/or environmental 
variables

• Allow quantification of uncertainty sources

• Support repeated run-to-failure within a finite budget

• Support automated data collection during the aging



Battery Testbed

� Experimental Plan 

� Cells are cycled through charge and 

discharge under different load and 

environmental conditions set by the electronic 

load and environmental chamber respectively 

� Periodically EIS measurements are taken to 

monitor the internal condition of the battery

� DAQ system collects externally observable 

parameters from the sensors

� Switching circuitry enables cells to be in the 

charge, discharge or EIS health monitoring 

state as dictated by the aging regime

BHM



Data Format
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Discharge Cycle Data

0 500 1000 1500 2000 2500 3000 3500 4000
1.5

2

2.5

3

3.5

4

Channel 1

C
e
ll 
V
o
lt
a
g
e
 (
V
)

0 500 1000 1500 2000 2500 3000 3500 4000
1.5

2

2.5

3

3.5

4

Channel 2

C
e
ll 
V
o
lt
a
g
e
 (
V
)

Recovery Recovery

0 500 1000 1500 2000 2500 3000 3500 4000

time (secs)

0 500 1000 1500 2000 2500 3000 3500 4000

time (secs)

0 500 1000 1500 2000 2500 3000 3500 4000
1.5

2

2.5

3

3.5

4

Channel 3

time (secs)

C
e
ll 
V
o
lt
a
g
e
 (
V
)

0 500 1000 1500 2000 2500 3000 3500 4000
1.5

2

2.5

3

3.5

4

Channel 4

time (secs)

C
e
ll 
V
o
lt
a
g
e
 (
V
)

Recovery



Run-to-Failure Data
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Aging Data

AgingAging



Modeling
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Logical Flowchart
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P(x)

x

Particle Filtering

� represent state as a 
pdf

� sample the state pdf as 
a set of particles and 
associated weights

ttk tk+1

x

actual state value

measured state value

state particle value

state pdf (belief)

actual state trajectory

estimated state trajectory

particle propagation

particle weight

associated weights

� propagate particle 
values according to 
model

� update weights based 
on measurement



� A particle filter iteratively approximates the 

posterior pdf as a set:
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� Prediction step: use the state update model

� Update step: with measurement, update the 
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Particle Filtering

� Update step: with measurement, update the 

prior using Bayes’ rule:
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Resampling

� Particle weights degenerate over time

� measure of degeneracy: effective sample size
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Resampling

CSW
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PF Flowchart
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Prognostic Framework 
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Particle Filtering as a Tool

� Model adaptation

� State estimation, tracking and prediction

� Nice tradeoff between MC and KF

� Useful in both diagnostics and prognostics

� Represent uncertainty

� Manage uncertainty



Sources of Uncertainty

� Model
� System complexity

� Insufficient knowledge

� Unknown environment

� Noise
� Internal, external� Internal, external

� Electrical, mechanical, thermal

� Sensor
� Digitization

� Bias

� Deadbands, backlash, hysteresis

� Nonlinear response



Modeling Uncertainty
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Results: Feature Extraction
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Results: Intermediate Steps
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Results: Intermediate Steps
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Results: Intermediate Steps
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Results: Intermediate Steps
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Results: PF Prognosis
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Results: RBPF Prognosis
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Comments

� PF framework allows explicit 
representation and manipulation of 
uncertainty

� Mathematical guarantees of convergence� Mathematical guarantees of convergence

� A variety of models can be accommodated

� RUL pdfs are truer representations of 
reality than MTBFs


